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SUMMARY

This paper presents a general model for dealing with abnormal events during program

execution and describes how this model is implemented in the �System. (The �System is

a library of C de�nitions that provide light-weight concurrency on uniprocessor and mul-

tiprocessor computers running the UNIX operating system.) Two di�erent techniques

can be used to deal with an abnormal event: an exception, which results in an exceptional

change in control ow from the point of the abnormal event; and an intervention, which

is a routine call from the point of the abnormal event that performs some corrective

action. Users can de�ne named exceptions and interventions in conjunction with ones

de�ned by the �System. Exception handlers and intervention routines for dealing with

abnormal events can be de�ned/installed at any point in a program. An exception or

intervention can then be raised or called, passing data about the abnormal event and

returning results for interventions. Interventions can also be activated in other tasks,

like a UNIX signal. Such asynchronous interventions may interrupt a task's execution

and invoke the speci�ed intervention routine. Asynchronous interventions are found to

be useful to get another task's attention when it is not listening through the synchronous

communication mechanism.
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INTRODUCTION

This paper presents a general model for dealing with abnormal events during program execution and de-

scribes how this model is implemented in the �System. The �System [1] is a library of C [2] de�nitions

that provide light-weight concurrency on uniprocessor and multiprocessor computers running the UNIX

�

operating system.

In this discussion, an abnormal event occurs when an operation cannot perform its desired computation

(this is similar to Ei�el's notion of failure of a contract [3, p. 395]). Two actions can sensibly be taken when

an abnormal event occurs:

1. The operation can fail, thereby causing termination of the expression, statement or block from which

the operation was invoked. In this case, control transfers to a location other than after the operation

invocation. This results in an exceptional change in control ow. To be useful, the location that control

transfers to must be contextually determined, as opposed to statically determined, otherwise, the same

action and context for that action will be executed for every exceptional change in control ow.

2. The operation can call a correction routine, which either takes some corrective action so that the

operation can succeed or determines that a correction is not possible and fails as in case 1. The

corrective action is an intervention in the normal computation of an operation. As above, the correction

routine has to be contextually determined, as opposed to statically determined, otherwise, the same

action and context for that action will be executed for every intervention of an operation.

Both kinds of abnormal events are discussed in detail. Thus, there are two possible outcomes of an operation:

normal completion possibly returning a value, or failure with a change in control ow.

The case where an operation returns a special value to indicate an abnormal event, i.e. a return code,

is not an actual failure of the operation. For example, the UNIX open operation returns a negative value

instead of a �le descriptor when a �le cannot be opened. A return code does not indicate a failure by our

de�nition because execution continues normally. In this case, both the user and the operation de�ner consider

the special value to be a legitimate result that must be treated in an appropriate manner (e.g. tested for

successful completion). Unlike an exception, which causes a change in control ow, there is no requirement

for a user to deal with the indicated failure after the operation invocation; the program continues as if the

operation succeeded. It is the user's responsibility to test the return code and perform some appropriate

action before any further operations that rely on the original operation are performed. In many cases this is

not done, resulting in a secondary error far from the actual error.

This paper is divided into two parts. The �rst part gives an overview of abnormal event facilities

and discusses some additional facilities that we feel are necessary. A set of \necessary" facilities are used

to compare a number of di�erent abnormal event mechanisms. This part should interest programming

language designers as it discusses many design issues for abnormal event facilities, in particular, abnormal

event facilities for concurrent systems. The second part describes an almost complete implementation of the

ideas presented in the �rst part. The implementation is written using the C preprocessor and C routines. No

compiler support was used so that several trade-o�s were necessary. In particular, the syntax for some of the

constructs is rather low level and is sometimes baroque. This part should interest programming language

implementors as it discusses the issues in the implementation of a sophisticated abnormal event scheme for

a highly concurrent environment.

Exceptions

The programmatic mechanism that indicates failure is called an exception, and when an exception is raised,

it causes control to transfer to (not invoke) a block of code called a handler. By de�ning handlers in di�erent

scopes, there may be several distinct handlers to which control may be transferred. The exact scope of a

handler depends upon the programming unit with which it is associated; this scope might be an expression,

a statement or a block.

When an operation fails and control transfers to a particular handler, the failing computation is not

completed. For example, if the handler is associated with an expression, the failing operation and any

�
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subsequent operations in the expression are not executed. If the handler is associated with a block, the

failing operation and any subsequent operations in the expression and statements in the block are not

executed. In this discussion, a handler's function is to adjust the current environment so that execution can

continue. This is called forward error recovery [4, p. 146]. The scope of a handler is chosen so that

control is transferred to a point where recovery by the handler is possible. If a handler cannot recover or if

there is no appropriate handler, the failure can be propagated to the invoker (caller) of the current operation

or can cause an error which terminates execution. Ensuring the handler performs adequate forward recovery

could possibly be enforced through post-condition veri�cation by a theorem prover or in an ad hoc manner

by a user speci�ed acceptance test at the end of the handler [5].

Interventions

The invocation of a dynamically determined correction routine is called an intervention. An intervention

routine might be speci�ed by making the routine a parameter (perhaps an implicit one) of the operation

that needs it, but this would be inconvenient and is not extensible; that is, a user could not add an

intervention parameter without changing the original operation de�nition. Interventions can also be handled

by constructs similar to those dealing with exceptions [6], but it is di�erent from an exception because an

intervention usually returns to the point of the abnormal event with a value. This is discussed in detail

shortly.

It is desirable to allow an intervention to be activated by another task; this is called an asynchronous

intervention. Such an asynchronous event is like a UNIX signal or system interrupt routine. Normally, an

intervention a�ects only the current task, so no synchronization with other tasks is needed. However, for an

asynchronous intervention, some implicit synchronization may occur in the other task before the intervention

is activated.

ABNORMAL EVENT MODELS

The seminal work on di�erent forms of abnormal event handling was presented by Goodenough in Reference

[6]. A brief analysis of the di�erent forms is presented, with examples given in a C++-like pseudo code.

Exceptions

As stated previously, an exception allows a transfer of control to a dynamically determined location. In

essence, the e�ect of an exception is a goto restricted in the following two ways. First, an exception cannot

be used to create a loop (i.e. cause a backward branch in the program). This means that only the looping

constructs can be used to create loops. Second, since an exception always transfers out of containing control

structures, it cannot be used to branch into a control structure. These restrictions are su�cient to preclude

the major problems associated with an unrestricted goto statement [7].

Exception Naming

In general, an exception has a name. In Ei�el, there are only names for the prede�ned exceptions. Other

exceptions arise implicitly through violations of pre-conditions and post-conditions or pre-de�ned hardware

and operating system exceptions. Not having explicit names for exceptions makes it impossible to know

which exception was raised, unless it is one of the prede�ned ones, and hence, why a computation failed, as

many operations can fail for a number of reasons.

Exception names can be speci�ed by declarations, as in:

exception X, Y

which create two named exceptions, X and Y; exceptions might also be associated with routine declarations

by listing the exceptions that can be raised in that routine, as in:

int f( int x, int y ) exception( X, Y )
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which states that exceptions X and Y may be raised in routine f.

The scope of an exception name is also important; two approaches are examined. The �rst approach is

a single name space for all exceptions. In this approach, the name of the exception must be unique system-

wide. This means that regardless of where a particular exception name is used in the system it always

identi�es the same exception. The second approach uses the block structure of the programming language

in which the exception mechanism is embedded to allow exceptions with the same name to be di�erent. In

this approach, the name of the exception is unique only within a particular scope.

We believe a scoped name space is superior to a single name space. A single name space increases

the potential for inadvertent collisions of names. For example, if a system routine is updated to raise an

exception, that exception might have the same name as a handler in user programs. These programs might

inadvertently attempt to handle the new system exception.

One implementation of this approach is to use the character string representation of the exception or a

system-wide unique numbering scheme. Unfortunately, constructing system-wide unique names or numbers

for each exception is di�cult with separate compilation and in distributed environments. An integrated

program development environment, where information about all compilations is retained, could provide this

capability.

A practical scheme for many existing program development environments is to adopt the same approach

used to uniquely identify external names. That is, the compiler assigns addresses to exceptions by generating

storage for them and the linker resolve references to exceptions in di�erent compilation units as it does

for other such names. These addresses can then be used as unique identi�ers in locating handlers. This

implementation can be used for both the single and scoped approach for naming exceptions. As well, if

storage is allocated for an exception, it might be used to contain other information, such as exception

inheritance information (discussed shortly).

Derived Exceptions

Some operations, such as opening a �le, can potentially fail for a large number of reasons. This could be

dealt with either by having a single generic open-�le exception with a parameter giving the precise reason,

or by having an exception for each kind of failure. If a generic failure is to be dealt with, the �rst form is

most convenient; whereas if a speci�c failure is to be dealt with, the second scheme is most convenient. Both

can be provided for if one exception can be derived from another [8, 9]. This could be speci�ed as follows:

exception jonathan : john == indicating that exception jonathan is derived from john

The e�ect is that an exception handler for john catches jonathan exceptions but not vice versa. This capability

for derivation is used extensively in the de�nition of �System exceptions as will be seen in the second part

of the paper. An exception that is not explicitly derived from another is treated as being derived from the

special builtin exception any, so that:

exception john

is treated as:

exception john : any

where any is essentially de�ned as:

exception any

Consequently, all exceptions in a program form a hierarchy whose root node is any. This permits any

exception in a program to be caught by an exception handler for any.

Scope of an Exception Handler

There are several di�erent models for associating a handler with the particular computation to which it

applies. For example, to associate handlers with a particular expression [6], a construct such as the following

might be used:
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d = (a + b)[ X: ... , Y: ... ] = c

where the scope of the handlers for exceptions X and Y in the brackets [ ] is the expression (a + b). Within

the brackets and after each colon is a handler body, which contains appropriate recovery code. In this

example, both handlers must return a value for the failing expression so that the expression computation

can continue. Alternatively, if handlers can only be associated with a series of statements [8], a construct

such as the following might be used:

except f

== block in which the following handlers are active

handler( X )

== recovery code for handler X

handler( Y )

== recovery code for handler Y

g

where the except statement introduces a block which de�nes the scope for the speci�ed handlers.

We adopt the second form, even though its granularity of association is not as �ne as in the �rst form.

For example, to express the �rst example using the second construct requires the following:

except f

temp = a + b

handler( X )

temp = 0 == recovery action

handler( Y )

temp = 1 == recovery action

g

d = temp = c

This decision is based on our experience that the need for �ne grained handling is rare. As well, having

handlers, which may contain arbitrarily complex blocks of code, in the middle of an expression can be di�cult

to read; we prefer the scope for handlers to be syntactically obvious and not hidden within expressions.

Finally, when used in an expression, the handler must have a mechanism to return results to allow execution

of the expression to continue; this usually requires additional programming language constructs.

Raising an Exception

All exceptions are raised, some implicitly by the runtime environment and others explicitly by users, through

a raise statement, as in:

raise X

which transfers control to a handler for the exception X terminating all active blocks between the raiser and

the handler (supported in Ada [10], ML [11], C++ [12], CLU [13], Mesa [14], Ei�el). Ei�el does not have an

explicit raise statement because all exceptions are raised implicitly; users have only indirect access to the

exception mechanism through assertions.

Multilevel versus Single-level Model

When an exception is raised it can be propagated to active blocks in one of two ways:

Multilevel model { the exception is propagated through the active blocks in reverse order until it is caught

by a handler (as in Ada, Mesa, ML, C++ Ei�el). If there is no handler, the exception is caught by a

general exception handler, which is de�ned implicitly in the �rst block (preamble) for a program, and

which usually terminates the program.
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Single-level model { the exception is propagated to the previous active block, and if not handled there, it

results in program termination or it is transformed to the \failure" exception, which is then propagated

through the active blocks in reverse order until it is caught (as in CLU and proposed in References

[5, 6]).

Since CLU is the only programming language that we are aware of that implements the single-level model,

we quote their justi�cation for adopting it:

... each procedure implements a mapping. The caller of a procedure invokes the procedure to

have the mapping performed; the caller need know only what the mapping is, and not how the

procedure implements the mapping. Thus, while it is appropriate for the caller to know about

the exceptions signaled by the procedure (and these are part of the abstraction implemented by

that procedure), the caller should know nothing about the exceptions signaled by procedures

used in the implementation of the invoked procedure. [15, p. 547]

To check this, either statically or dynamically, requires that all exceptions that can be raised by a routine

must be explicitly speci�ed as part of a routine's header, for example:

int f( int x, int y ) exception( X, Y )

which states that exceptions X and Y may be raised in routine f. It also requires that the caller handle all

exceptions that might be raised; for routine f, each call would have to be embedded in a block containing

appropriate handles, as in:

except f

...

f( ... ); == block in which handlers are active

...

handler( X ) ... == handler for exception X

handler( Y ) ... == handler for exception Y

g

If a caller does not handle an exception, it is considered to be an error or it is transformed to the \failure"

exception with a loss of knowledge about the exact exception raised and possibly data passed from the

raise. If su�cient information is available, the lack of a particular handler can be detected at compile time;

otherwise it requires dynamic checking, for example, in the case of incomplete type information among

separate compilation units.

An intermediate model between single-level and multilevel is suggested in Reference [9]. As for the

single-level model, an exception can be propagated outside of a terminating block if the the exception is

speci�ed as part of the routine's header. However, if the exception is not part of the routine's header it may

be transformed from the speci�c to the general. The transformation makes use of an exception hierarchy

to promote the speci�c exception to one of the exceptions speci�ed in the routine's header that subsumes

it. Thus, a speci�c non-handled exception is not always transformed to the \failure" exception or causes

termination.

We reject both the single-level and the intermediate model as being unnecessarily cautious and restrictive,

and choose instead the multilevel model because it is simpler to use and more extensible. First, we disagree

with the fundamental premise that \each procedure implements a mapping". This is true only when a

routine is self-contained. Many routines are used for structuring a program; that is, code is moved into a

routine to avoid replication or for organizational reasons. When this is done, there is no longer a guarantee

that all exceptions produced by the mapping can be raised in the \root" routine of the mapping; exceptions

may now be raised in the structural routines and may be several call levels from the root module. In other

words, the mapping is implemented as a set of cooperating routines, any of which might raise an exception to

indicate failure of the mapping. For example, the end-of-�le exception is often raised several call levels from a

user's call to the read routine because the input abstraction is subdivided into a number of submodules with

the lowest level routines detecting the end-of-�le. Second, we doubt that programmers are willing to code

a (potentially large) number of handlers for every routine call when most of them will be empty and when
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the programmer has decided to handle the exception at a higher level. (The CLU designers agreed with this

point and do not require handlers for every exception that might be raised by a call in a routine.) Third,

augmenting a routine with new exceptions may require that handlers be added to every routine that contains

a call to the augmented routine, to ensure that all exceptions are handled. We believe that exceptions should

be like default parameters, which can be added without directly or indirectly invalidating routines that call

another routine. Fourth, in an environment where routines are commonly passed as arguments, it is not

possible to anticipate all possible exceptions that might be raised when a routine argument is invoked, as

in:

int h(int (*p)(...)) f == p is a routine parameter

...

*p( ... ) == invoke routine parameter which might raise an exception

...

g

int g( ... ) exception( X ) f ... g

int f( ... ) f

except f

h( g ) == pass routine g as argument which might raise exception X

handler( X ) ...

g

g

If the de�nition of h is global, e.g. in a library, it generally cannot know all the exceptions that might be

raised by all the di�erent routines passed as arguments. If static checking is used to detect missing handlers,

g cannot be passed as an argument to h, and consequently, reusability is restricted. If dynamic checking

is used to detect missing handlers, the exception X will generate an error or be transformed into a more

general exception, neither of which is useful to the implementor of routines g and f. Also, this usage does

not violate the abstraction of h because the user of h is supplying the part of the implementation that raises

exception X. We believe that environments where routines are passed as arguments are becoming common.

For example, the functional programming style, as in Scheme [16] and ML, results in many routines being

passed as arguments. As well, modern type systems may implicitly require routine parameters or variables,

as in parametric polymorphic type systems (e.g. implicit routine parameters) [17] and object-oriented type

systems (e.g. virtual members).

Therefore, the multilevel model was chosen because it does not transform an exception during the search

for the handler, and as with the single-level model, it allows incremental program construction as it is possible

to add an exception to a routine without having to change any of the routines that call it. In essence, we

believe that exceptions are attributes of a routine but are not part of its type.

Matching an Exception to a Handler

During the raising of an exception, the exception speci�ed in the raise statement has to be matched with a

handler. The type equivalence mechanism of a programming language a�ects the search for a handler.

For the single-level model, all checking is done at compile time and the search can be as simple as an

indirect jump to the appropriate handler because the handler can be determined statically at the raise. For

the multilevel model, the search is more complex because the handler cannot be determined statically and

certain type equivalence mechanisms require runtime type checking during this search.

Fundamentally, the �rst aspect of the handler search is to locate a list of handlers associated with an

enclosing block and compare for equivalence the exception speci�ed in the raise with the ones speci�ed in

the handlers. For type systems that use name equivalence, the name of the raised exception must match

the name speci�ed at the handler. For type systems that use structural equivalence, the structure of the

raised exception must match the structure of that speci�ed at the handler. Unfortunately, this makes all

exceptions without parameters equivalent, which is highly undesirable; furthermore, the multilevel model
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requires dynamic type checking to match exceptions with parameters. These drawbacks explain why there

are no programming languages that use structural equivalence for exception matching.

For type systems that support inheritance, the inheritance information is used at runtime to either

convert exceptions or a�ect the handler matching. In the single and intermediate level models, an exception

may be transformed from a lower level to a higher level if the caller only has a handler for the higher-level

exception. But transformations from the speci�c to the general lose information. In the multi-level model,

the inheritance information is used during matching to determine if the raised exception is the same as or

derived from the exception in the handler. However, the raised exception is never transformed during the

handler search.

In the C++ exception mechanism, there is no special exception type; any type can be used as an exception

type. This seems to provide an additional level of generality. However, we doubt that users will create types

that are used both in normal computations and for raising exceptions. Users will normally create speci�c

types that describe exceptions, e.g. overow, underow. Therefore, having a speci�c exception type is not

really a restriction, and it provides additional documentation and possibly discrimination among conventional

and exception types.

Interventions

Interventions are the common alternative to exceptions for dealing with abnormal events. As stated pre-

viously, the intervention model allows a routine to be called to e�ect a correction. This is like a PL/I on

condition [18]. This model provides for extensibility since a user can possibly deal with an abnormal event

and continue execution without changing the existing routine in which the abnormal event occurred, e.g.

dealing with a zero-divide error by returning zero or a large number. In essence, an intervention handler is

a dynamically bound routine that is called at the point of the abnormal event, as available in languages like

Lisp.

In a statically scoped language, each intervention is implemented using a separate stack. When an

intervention handler is installed, it is pushed on the top of the speci�ed intervention's stack. When the

intervention is called, the handler at the top of the stack is invoked. In a statically typed programming

language, the type of the intervention is �xed when it is created so that static type-checking is possible

at the intervention call. The arguments that can be passed to an intervention routine and the result from

the handler allow data at the intervention point to be passed to the handler and a corrective result to be

returned if applicable.

Intervention Naming

An intervention must be explicitly named and specify the types of the arguments passed to it and the result

returned from it. For example, the intervention declaration:

intervention int fred( oat, int )

declares intervention fred whose handlers take oat and int arguments and return an int result.

Calling an Intervention

An intervention is invoked by using the intervention name, as in:

i = fred( 3.5, 5 )

which invokes the routine at the top of the intervention stack.

Scope of an Intervention Handler

Like exceptions, intervention handlers could be associated with speci�c operations or blocks containing the

operation and we prefer the latter, giving:
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inter f

== block in which the following handlers are active

handler fred( x, y ) == push handler on fred stack, x and y are formal in�parameters

return x + y == body of handler fred, whose result type is speci�ed by fred

handler mary( ... ) == push handler body on mary stack

... == body of handler mary, whose result type is speci�ed by mary

g == pop handlers o� fred and mary stack

Each handler de�nes the body of a routine with the speci�ed parameters in the scope of the handler clause

of the inter statement. Pointers to these handler routines are pushed on the stack of the corresponding

intervention.

Exceptions versus Interventions

In a programming language that provides no abnormal event constructs, it is possible to simulate both

the exception and the intervention models. Simulating the exception model requires the setting of global

ag variables and their testing following any call that might set them (likely many calls). Simulating the

intervention model requires adding intervention parameters to all routine de�nitions that require them or

that call routines that need them, or by explicitly building the stacks described previously. Both simulations

violate encapsulation and extensibility besides being tedious and error-prone to implement. Thus, it is

desirable to have at least one of these models provided in the programming language. However, it is not

possible to use either model to simulate the other without using the techniques just described. Therefore,

both models are desirable in a programming language.

Resumption Model

A combination of exception and intervention mechanisms for dealing with abnormal events is usually called

the resumption model [6] (supported in Mesa, Ei�el). In the resumption model, the exception mechanism

is used to call a handler, and the handler is allowed to decide whether to terminate or resume the caller. This

model can be simulated with the intervention and exception models by changing each resumption exception

into an intervention and possibly an exception. The intervention is invoked when the abnormal event is

detected, and the intervention can deal with the problem or raise an appropriate exception. The resumption

model presumes that it is occasionally desirable to have the intervention routine make the decision to

terminate or continue. However, we believe that these situations are rare, and hence, having to simulate the

resumption model in those situations where it is needed will not be a signi�cant impediment to programmers.

DESIGN REQUIREMENTS

Having selected certain models for dealing with abnormal events, there were still important requirements

that directed this work:

Exceptions

Exception Communication

We believe the ability to pass exception-speci�c data from the raiser to the handler is essential, otherwise

the handler cannot analyze why the exception was raised or print an informative error message. Anonymous

exceptions, as in Ei�el, cannot support exception-speci�c data. The design presented thus far is easily

extended to allow communication, as in:

exception john f

int x, y == data to be communicated

g

which de�nes an exception, john, in the current scope with �elds, x and y, that permit data to be communi-

cated from the raise statement to the handler. When the exception john is to be raised, an instance of the
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type de�ned by john is created which holds the values of the exception data, x and y; this instance is then

passed to the appropriate exception handler, for example:

except f

...

raise john( 3, 5 ) == john is both the exception raised and the type for the exception instance

...

handler( john z ) == z is a formal in�parameter of type john

print( z.x, z.y )

g

In this form, the exception instance is an object.

In ML, an exception declaration, such as:

exception john of int * int;

de�nes a routine called john that takes a pair of integers as its parameters. The declaration conceptually

returns an exception instance containing a unique identi�er for john and the two int arguments. The raise

statement invokes this routine to get an exception instance, and uses the resulting exception instance to �nd

the handler and deliver the exception's arguments.

Our suggestion for implementing an exception using a storage address is directly analogous to the ML

form|the routine is located at a unique address which identi�es the exception and the type of the routine

de�nes what values are needed to instantiate the exception. In both cases, there are two essential properties:

a unique identi�cation and a type. It is the exception type's storage or ML's exception routine that provides

the identity for the exception and possibly other necessary exception information. It is the type part that is

used to allow statically type-safe communication between the raise statement and the handler.

A derived exception can have �elds in addition to those provided by its parent, as in:

exception jonathan : john f oat z g

except f

...

raise john( 1, 2 )

...

raise jonathan( 1, 2, 3.6 )

...

handler( john w )

... == w is an instance of john so it only has �elds x and y

g

The exception jonathan has three �elds, the �rst two inherited from exception john. Although the exception

handler for john catches exception jonathan, it would not have access to parameter z of a jonathan exception

instance.

Several object-oriented programming languages support multiple inheritance among class de�nitions.

This suggests that multiple inheritance could be applied to exception de�nitions; however, de�ning the

order of the arguments for an instance of such an exception would be syntactically di�cult. While multiple

inheritance allows even more complex relations among exceptions, this can substantially increase execution

cost. As is being discovered, multiple inheritance is not as useful a mechanism as it initially seemed [19, 20].

Free versus Bound Exception

A free exception is one that is not a component of a structure or class, while a bound exception is one

that is. Each di�erent instance of a structure or class containing a bound exception e�ectively de�nes a

di�erent exception. A handler for a free exception catches any instance of that exception, while a handler

for a bound exception catches an exception associated with a particular instance of the structure or class of

which it is a component, for example:
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exception fred == free exception

class mary

exception john == bound exception

...

mary m

except f

...

raise fred == raise free exception

...

raise m.john == raise bound exception

...

handler( fred ) ... == catches free exception

handler( m.john ) ... == catches bound exception

g

If a user wanted to have handlers for the free exception fred to also catch an associated john exception, the

bound exception would have to be derived from the free exception, as in:

exception fred

class mary f

exception john : fred

...

It is possible to simulate bound exceptions using free exceptions, as shown in Figure 1; however, we

believe it makes programs clearer and more extensible if bound exceptions are used. In the left example

of Figure 1, the free exception john is caught and the handler must subsequently discriminate among the

various data items that could have raised the exception. In the right example, there is a separate handler

for each di�erent john. In the left example, the default clause that re-raises the exception is, in general,

required. If this convention is not followed, a john exception with an unenumerated data item would be

caught and ignored instead of being propagated to the next active block. Following such a convention is

unnecessary in the right example because any john exceptions associated with objects other than those listed

are automatically propagated because they are not caught. Hence, the coding style on the right is inherently

extensible.

Finally, the use of bound exceptions mitigates accidentally catching unanticipated exceptions. For ex-

ample, assume that a free exception, ioerror, is raised when an I/O operation fails. If a routine is modi�ed

to use a �le but a handler for ioerror is forgotten, an ioerror exception raised in the use of the new �le would

be caught accidentally by the caller of the routine if the caller has an ioerror handler. Alternatively, if the

ioerror exception is bound to the �le descriptor for an open �le, the caller catchs only ioerror exceptions for

its speci�c �les.

Exception Variables

Currently, all exception instances have been created by the raise statement, but the design does not preclude

an exception variable, which might be declared and subsequently used in a raise statement. For example,

the exception variable f has di�erent exception instances assigned to it:
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class mary

...

exception john f == free exception

mary m

g

mary x, y, z

except f

...

raise john(x) == x parameter

...

raise john(y) == y parameter

...

raise john(z) == z parameter

...

handler( john m ) == catch john

case m == discriminate

x: ...

y: ...

z: ...

default:

raise john(m) == re�raise

g

class mary

exception john == bound exception

...

mary x, y, z

except f

...

raise x.john == x's john exception

...

raise y.john == y's john exception

...

raise z.john == z's john exception

...

handler( x.john ) ... == discriminate

handler( y.john ) ...

handler( z.john ) ...

g

Figure 1: Free versus Bound Exception

exception fred f int m g

fred f = fred( 3 ) == f is an exception variable of type fred

...

raise f == raise an exception fred with value 3

...

f = fred( 5 )

...

raise f == raise an exception fred with value 5

...

Exception variables only seem useful when they there is data to be communicated. Furthermore, we do not

recognize many situations where this facility is particularly useful. This might result from our inexperience

in writing large complex programs using exceptions.

Interventions

Intervention De�nition and Communication

In essence, an intervention is a stack data structure that is polymorphic in the routine pointers that can be

pushed onto the stack. Thus, an intervention could be considered an instance of this data structure. Like

exceptions, the ability to pass intervention speci�c data from the call to the handler is essential. Further,

the ability to return a result is necessary in most cases so that an expression containing a failing operation

can continue. This is handled using the normal routine call mechanism.
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Derived Interventions

Interventions are like routines while exceptions are like classes. Deriving interventions from other interven-

tions does not seem desirable nor is routine derivation obvious because of contra-variance [21].

Free versus Bound Intervention

Interventions are simply dynamically bound routines, somewhat like virtual routines in a class-based pro-

gramming language, but they can change during the life-time of an object. Having interventions as �elds in

a data structure can be useful [22], as with exceptions. For example, the bound intervention mary in:

class fred f

intervention int mary( oat );

...

g

fred f;

inter f

== use f

handler f.mary( x ) == push handler body on f.mary stack

== intervention body

g

allows the same extensibility as does a bound exception.

Intervention Variables

Because an intervention is a function type, it cannot be used to create variables. At best it could be used to

create pointers to interventions.

Asynchronous Events

An asynchronous event is an event activated in one task by a concurrent task or activity (e.g. a hardware

device). In analogy to normal (synchronous) exceptions, we de�ne an asynchronous exception to be an

exception caused by an asynchronous event; similarly, an asynchronous intervention is an intervention caused

by an asynchronous event. Both asynchronous exceptions and interventions are examined.

Asynchronous exceptions and interventions are mechanisms for interacting with a task that might cur-

rently not be listening because it is computing or blocked waiting for synchronous communication to com-

plete. For example, pressing the interrupt key might be handled by a keyboard manager task by raising an

asynchronous event in the task currently using the terminal screen and/or keyboard. This might cause the

task to terminate its output and reset itself for a new input command. Another example is a group of tasks

that is collectively solving a problem and the successful completion of one task sensibly causes the other

tasks in the group to stop further computation. This would be appropriate, for example, if the tasks are

collectively searching a database for some key. In order to provide for this capability, the successful task

must have a means of interrupting the other tasks to terminate their computation and reset to some known

state in possible preparation for a new search or to shutdown.

Regardless of the approach taken, any asynchronous event mechanism must cope with the following:

� A task needs to be able to control when asynchronous events are handled.

Asynchronous exceptions or interventions occur at unpredictable times. For example, a task initially

may need to establish a handler or intervention routine before it deals with any asynchronous event;

otherwise, the event mechanism would be useless because no assumption can be made about the order

or speed of execution of tasks, i.e. the asynchronous event could arrive before the code to deal with

it is activated. (Requiring an initialization protocol to deal with this problem is not an acceptable or

a possible solution in many cases.) This and other situations during the execution of a task require

13



that asynchronous exceptions or interventions be able to be disabled and enabled. Further, a user

may disable asynchronous exceptions or interventions during a task's execution to perform an atomic

operation and subsequently re-enable them. Disabling and enabling provides the ability to postpone

asynchronous events during that period.

� A task needs to be able to completely ignore an asynchronous event.

This is di�erent from the need to postpone asynchronous events, where the event is eventually delivered.

A task may want to receive and ignore an asynchronous exception or intervention.

Asynchronous Exception

Several proposals have been made for delivering exceptions among tasks [10, 23, 24, 25]. In some cases the

exception can only be raised in a task blocked doing communication with the task raising the exception, as

in Ada. (This simpli�cation makes asynchronous exceptions similar to synchronous exceptions except there

are still multiple tasks involved.) In others, the exception can be raised in another task regardless of its

execution state. Finally, some schemes convert synchronous and asynchronous interventions into exceptions.

An important question to be asked is whether an asynchronous event should be allowed to cause an

exception. We have de�ned an abnormal event to be the failure of an operation to complete its computation.

Since an asynchronous event normally happens during a successful computation, we do not believe that

asynchronous events should be able to directly cause an exception.

Asynchronous Intervention

Asynchronous interventions exist in almost all systems as interrupt routines. However, this capability is

not usually present in the programming languages that run on these systems. Except for Encore EPT [24],

whose interventions are restricted to dealing with UNIX signals, we know of no other programming language

mechanism that deals with asynchronous interventions. Instead, asynchronous interventions are supplied

though the underlying system, for example, UNIX signals. However, UNIX signals are very simple, having

no facility to deal with nested handlers and no mechanism to communicate information from the signaller

to the signal routine.

The advantages of asynchronous interventions are that the receiver has complete control when an inter-

vention routine is activated. The receiver can install an empty routine to ignore asynchronous intervention

activations. The receiver can return to the point of interrupt or raise an exception in the intervention rou-

tine. Finally, if the receiving task is blocked awaiting some other task or system operation to complete, an

asynchronous intervention will not cause the operation to fail. When a task is blocked, the intervention rou-

tine may be called by temporarily awakening it to execute the intervention routine, or the intervention may

be postponed until the task is unblocked. (Because of the complexity of implementing the former without

compiler support, we have chosen to implement only the latter. Unfortunately, this precludes several useful

capabilities, such as pre-empting deadlocked tasks.)

COMPARISON

The following features from the abnormal event models and design requirements can be used to characterize

existing abnormal event handling capabilities:

termination { transfer of control to a dynamically determined location.

intervention { invocation of a dynamically determined routine.

multilevel { the use of the multilevel model versus the single-level model.

scoped naming { the use of a scoped name space versus a single name space.

inheritance { the ability to construct hierarchical relationships among exceptions.

parameters { the ability to communicate information from the abnormal event to the handler and possibly

back to the activation point for interventions.

14



PL/1 CLU Mesa Ada Cui C++ Ei�el ML Modula-3 Argus

termination � � � � � � � � �

intervention � � � �

multilevel N/A � � � � � � �

scoped naming � � � � � � N/A � � �

inheritance �

parameters � � y � � � �

bound �

asynchronous

yCui's model has data passing only for interventions.

Table 1: Programming Language Comparison

Encore EPT Sun LWP Lee �System

termination � � � �

intervention y � �

multilevel � � � �

scoped naming � �

inheritance �

parameters �

bound �

asynchronous y �

yEncore interventions can only be used with Unix signals.

Table 2: Abnormal Event Library Comparison

bound { exceptions that are �elds in data structures, which establishes a relationship between instances of

a type and exceptions.

asynchronous { the ability to cause an abnormal event in another task.

Tables 1 and 2 show which characteristics are available in a number of programming languages and abnormal

event libraries.

INTRODUCING THE NEW CONSTRUCTS INTO C

Unfortunately, our particular abnormal event model cannot be cast into C without changes to the language;

therefore, much of the syntactic and semantic eloquence presented in the previous pseudo code must be aban-

doned. In short, the C implementation is a low-level interpretation of the model's functionality. Therefore,

parts of the previous mechanism are not enforced by the compiler and users are required to follow particular

conventions for correct and consistent results. Further, because our implementation uses macro de�nitions,

this leads to some other limitations.

This work extends that done by Lee in Reference [25], Rizk and Halsall in Reference [26], and Roberts

in Reference [27]. While our syntax is di�erent, the basic concepts are similar. However, our work provides

the following additional features: derived exceptions, exception parameters, bound exceptions, interventions

and asynchronous interventions. As a simple introduction to the abnormal event syntax, Figure 2 shows an

example that de�nes two exceptions, one raised in routine f1 and the other in f2 when an abnormal event is

detected.

The implementation was built as part of the �System light-weight tasking library so that ideas about

asynchronous interventions could be tested. The only features of the �System that are used in this paper
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are the non-blocking I/O library, task creation, and communication among tasks using send/receive/reply

[28]. The non-blocking I/O routines are the same as their UNIX counterparts except that their names are

capitalized and pre�xed with the letter \u", and semantically they do not block the UNIX process when

performing an I/O operation. Task creation is done by routine uEmit, which has as parameters the name of

a C routine that starts running concurrently and a list of arguments that are passed to that routine. Tasks

communicate using routine uSend, uReceive and uReply, which have obvious parameters.

All of the following abnormal event facilities work on all the platforms on which the �System runs. The

�System runs on the following processors: M68K, NS32K, VAX, MIPS, i386/486, Sparc, and the following

UNIX operating systems: Apollo SR10 BSD, Sun OS 4.x, Tahoe BSD 4.3, Ultrix 3.x/4.x, DYNIX, Umax

4.3, IRIX 3.3.

EXCEPTION DEFINITION

An exception de�nition in C is divided into two parts: the exception declaration and the type of the exception

instance.

Exception Declaration

An exception is declared using type uException. This allocates storage that provides the unique address

for identifying the exception, while the storage holds a pointer to the exception from which it was derived.

When separate compilation units are linked, the linker ensures that externally declared exceptions have the

same identity. When an exception is raised, the address of the exception is used as (part of) the search key

during the searching for the handlers. In almost all of the subsequent contexts where an exception is used,

it is the exception address that is needed. While a compiler could automatically determine these contexts

if exceptions were integrated into the language, this is not possible in our implementation. Therefore, in

almost all cases, a user must precede an exception name with the address-of operator (&). Attempts to

automatically insert the & failed due to the inadequacies of the C preprocessor and a desire to allow pointers

to exceptions.

An exception must be initialized at the point of declaration using the macro U EXCEPTION and cannot

change afterwards, i.e. it has type quali�er const; the parameter of U EXCEPTION speci�es the address of

the exception from which the new one is derived. If an exception is not derived from any other exception, it

must be derived from the prede�ned exception uAny. For example,

uException except1 = U EXCEPTION( &uAny ), except2 = U EXCEPTION( &uAny );

declares two exceptions and derives them from the prede�ned exception uAny. A more extensive example:

uException except3 = U EXCEPTION( &except1 ), except4 = U EXCEPTION( &except1 );

uException except5 = U EXCEPTION( &except4 );

creates the following hierarchical relationships among the exceptions (with indentation used to indicate

derivation):

uAny

except1

except3

except4

except5

except2

Here, if the exception except5 is raised, it can be caught by a handler for any of except5, except4, except1,

and uAny. Because every exception has to be derived from some other exception, all exceptions form a single

hierarchy. Our current experience indicates that a single hierarchy is su�cient.
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uException SingularMatrix = U EXCEPTION( &uAny );

=* no exception type because it is a simple character string *=

uException DimensionMismatch = U EXCEPTION( &uAny );

struct DimensionMismatchMsg f

char *msg;

int r1, c1, r2, c2;

g;

void MatrixInvert( ... ) f

...

if ( singular matrix ) f

char *data = "singular matrix";

uRaise( NULL, &SingularMatrix, data, strlen( data ) + 1 );

g

...

g

void MatrixMult( ... ) f

if ( row/column dimensions are not correct ) f

DimensionMismatchMsg inst = f

"non-matching row/column dimensions for matrix multiply", r1, c1, r2, c2 g;

uRaise( NULL, &DimensionMismatch, inst, sizeof(inst) );

g

...

g

void uMain( int argc, char *argv[], char *envp[] ) f

char *singularmsgp;

DimensionMismatchMsg *dimmismsgp;

int i;

...

for ( i = 0; i < n; i += 1 ) f

uExcept f

MatrixInvert( M ); =* block in which exception handlers are active *=

MatrixMult( M, N );

g uHandlers f

uWhen( NULL, &SingularMatrix, &singularmsgp ) f

uFprintf( stderr, "%s\n", singularmsgp );

g

uWhen( NULL, &DimensionMismatch, &dimmismsgp ) f

uFprintf( stderr, "matrix M's row size %d must equal N's column size %d\n",

dimmismsgp�>r1, dimmismsgp�>c2 );

g

g uEndExcept;

g

g

Figure 2: Matrix Operation Example
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Exception Type

When an exception is raised, an exception instance, which contains the �elds of the exception, is passed from

the raiser to the handler. The data allow the exception handler to analyze why the exception was raised or

to print an appropriate error message. To simulate the derivation of exception types shown earlier, users

must follow these conventions:

1. The name of the exception type must be the name of the exception with the su�x Msg. These types

are used to create a pointer to or cast into the appropriate type the exception instance passed from

the raise statement. If an exception provides no more parameters than its parent, it can use the same

exception type as its parent. If an exception provides only a single value and has no derived exceptions,

it is possible to forego creating a special exception type structure. Here, the type of the single value is

used directly instead of a structure containing it.

2. The type for a derived exception must contain as its �rst �eld an item with the type of its parent so

that an instance of the derived exception can be passed to a handler for any parent exception.

For example, the pseudo code:

exception john f int x, y g

exception jonathan : john f oat z g

is translated into C as:

uException john = U EXCEPTION( &uAny ), jonathan = U EXCEPTION( &john );

typedef struct f j typedef struct f

int x, y; j johnMsg base; =* exception type of parent *=

g johnMsg; j oat z;

j g jonathanMsg;

Because the type for a parent exception does not include the �elds of the type of a derived exception,

information associated with the derived exception may be inaccessible in handlers for parents of the exception.

These conventions are used for all the prede�ned exception types that are discussed shortly and must be

adhered to if user-de�ned exceptions are to work with the prede�ned exceptions.

RAISING AN EXCEPTION

Bound exceptions a�ect the way that exceptions are implemented; free exceptions can be dealt with as a

special case of bound exceptions. There are basically two approaches to implementing bound exceptions.

Since bound exceptions are di�erent for each instance of the data structure (class) they are associated with,

the obvious approach is to treat the exception as a �eld of the data structure with which it is associated.

However, this may be quite costly because there may be a substantial amount of storage used for exceptions

in each instance and each exception �eld must be initialized. For example, in our implementation, each �le

descriptor needs storage for 20 exceptions and these exceptions must be initialized.

The other approach separates the data-structure instance and its exceptions. The bound exceptions are

essentially de�ned to have static storage class so that they are instantiated only once. A raise statement then

speci�es two addresses: the address of the data-structure instance and the address of the bound exception.

Correspondingly, in the handler, two addresses are speci�ed to compare with the raise statement addresses;

however, the exception address in the handler need only be a parent exception of the one speci�ed in the

raise statement. In this scheme, no storage is needed in each data-structure instance for bound exceptions.

However, each raise statement and handler now has two pointer values. The assumption is that the number

of data-structure instances with bound exceptions will be greater than the number of raise statements and

handler clauses so that there will be a net saving in the amount of storage used. We have adopted the latter

approach to implementing bound exceptions and provide free exceptions by using the null address for the

associated data-structure. Hence, bound exceptions are simulated by making them into free exceptions with

names that do not conict with other free exceptions, possibly by pre�xing the exception name with the

structure name, as in:
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exception fred

exception mary john =* bound exception moved out of mary and renamed *=

class mary

...

mary m

except f

...

raise( null, fred ) =* raise free exception *=

...

raise( m, mary john ) =* raise bound exception *=

...

handler( null, fred ) ... =* catches free exception *=

handler( m, mary john ) ... =* catches bound exception *=

g

When a bound exception has essentially the same function as a free exception, only a single exception

needs to be declared. The free and bound exceptions can be distinguished by using null or a data structure

address in the raise statement and handler. This was done for all the I/O exceptions in the �System, for

example:

FILE *f, *g

exception Eof =* free exception for any end of �le *=

except f

fgets( ..., f ) =* read from �le f *=

fgets( ..., g ) =* read from �le g *=

handler( f, Eof ) ... =* catch f's end of �le *=

handler( null, Eof ) ... =* catch any �le's end of �le *=

g

Raise Routine

The routine uRaise is used to raise a synchronous exception, as in:

uRaise( data-item-address, exception-address,

exception-type-instance-address, exception-type-instance-length )

data-item-address is the address of the data structure that contains the bound exception or NULL if the

exception is a free exception.

exception-address is the address of a uException name.

exception-type-instance-address is the address of an exception instance to be passed to the exception

handler.

exception-type-instance-length is the size in bytes of the exception type instance to be passed to an

exception handler. Usually this is just the sizeof the exception type unless the exception type is a

variable-sized data structure, such as a character string.

An exception a�ects the current task's thread, terminating the active blocks that the thread is currently

executing. In the �System, both coroutines and tasks have independent stacks of active blocks. When

an exception terminates the last active block of a coroutine or task, the exception is handled by a default

handler for exception uAny. This handler prints a speci�c message for the prede�ned exceptions, including

all data passed from the raise point, and a generic message for other exceptions, including user-de�ned ones.

Control never reaches the statement after a uRaise.
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HANDLING AN EXCEPTION

Exception Handler

An exception handler is de�ned using the macros uExcept, uHandlers, uWhen, and uEndExcept in the following

manner:

uExcept f

=* block in which the following exception handlers are active *=

g uHandlers f

uWhen( ... )

=* �rst exception handler block *=

uWhen( ... )

=* subsequent exception handler block *=

...

...

g uEndExcept;

The macro uExcept indicates the beginning of the block of code for which the exception handlers are active.

The end of this block is indicated by the uHandlers macro. The exception handlers de�ned for a uExcept

statement are active for the exception block and any nested blocks or routines called fromwithin the exception

block. The uHandlers macro is followed by a block containing the exception handlers. Each exception handler

is introduced by the macro uWhen, which is followed by a (possibly compound) statement which is the body

of the exception handler. The current implementation does not allow the use of continue, break, goto or return

statements that would cause control to transfer out of the uExcept statement because the exception state

will not be updated correctly. (Because an exception already performs termination of control structures, it

can be used to get the e�ect of a break statement.) The macro uEndExcept terminates the block containing

the exception handlers. uExcept statements may be nested, in both the exception and the handler blocks.

The uWhen macro speci�es the information used in the raise search to �nd an appropriate handler.

uWhen( data-item-pointer, exception-address, exception-type-instance-pointer )

data-item-pointer is the address of a data item that contains the bound exception or NULL if the exception

is a free exception. The value NULL is used as the wildcard value, which matches with any data item.

This address is never dereferenced.

exception-address is the address of a uException name. This may be the address of any user exception

or prede�ned exception (e.g. uAny).

exception-type-instance-pointer is the address of a pointer into which the address of the exception type

instance from the raiser is copied. This pointer is only valid within the statement after the uWhen.

When an exception is propagated to the uExcept block, the uWhen macros are searched in order from

uHandlers to uEndExcept. Both of the following must be true for a uWhen to be selected:

1. The data-item-pointer speci�ed in the uRaise must match the one in the uWhen or else the data-item-

pointer in the uWhen must be NULL.

2. The exception-address speci�ed in the uRaise must match the one in the uWhen or one of the exceptions

from which it is derived.

Therefore, uWhen macros for derived exceptions must precede uWhen macros for exceptions from which they

are derived, for example:
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uExcept f

uFgets( ..., f ); =* uSystem cover routine for fgets *=

uFgets( ..., g ); =* uSystem cover routine for fgets *=

...

g uHandlers f

uWhen( f, &uEofEx, ... ) =* catch f's end of �le *=

uWhen( g, &uEofEx, ... ) =* catch g's end of �le *=

uWhen( NULL, &uEofEx, ... ) =* catch any other end of �le *=

uWhen( NULL, &uAny, ... ) =* catch all other exceptions *=

g uEndExcept;

A uWhen macro with a NULL data-item-pointer and the address of exception uAny should be used only as

the last exception handler in the block because handlers after it will never be selected. (Appendix A shows

a complete �le merge program using exceptions.)

Within an exception handler, the prede�ned routines uRaisedData(), uRaisedException() and uRaisedLength()

can be used to access the corresponding argument values used in a uRaise. This is useful in a handler, for ex-

ample a uAny handler, to determine exactly which exception was raised and which data item it is associated

with. A handler can re-raise an exception by using these routines, as in the following:

...

uWhen( NULL, &uAny, &msg ) f

if ( uRaisedData() == &f && uRaisedException() == &UserExcept2 )

uRaise( uRaisedData(), uRaisedException(), msg, uRaisedLength() );

...

g

...

This approach is more general than having a special reraise construct because the prede�ned routines are

useful in situations other than re-raising an exception.

Ensuring Correct Values in a Handler

With an optimizing compiler, there is an unavoidable problem arising from implementing exception handling

using macros, i.e. not integrating them into the language. An optimizing compiler may hold the values of

certain variables in registers for a series of statements and, in particular, for an entire uExcept construct.

The problem occurs because it is not possible to locate and restore the registers saved by a call to a routine

which raises an exception. Instead, register values are saved at the beginning of a uExcept statement and

restored if a handler for that block is selected. Thus, if the value of a variable temporarily placed in a register

is changed between the uExcept statement and the occurrence of an exception, an out of date (stale) value

may be restored for it. This can result in unexpected behaviour if the program depends on the values of

variables being current after an exception has occurred.

To eliminate this problem, variables that are modi�ed in the exception block should be quali�ed with

volatile, which was added to ANSI-C \to ensure that a local variable retains the value it had at the time

of the call to longjmp" [29, p. 86]. A variable with this quali�cation is assigned to a register only for very

short durations, so even when exceptional control ow occurs, the variable always contains its current value.

Requiring users to specify which variables must be volatile is error prone, but this is the best that can be

done when abnormal event handling is not part of the programming language.

EXCEPTION VARIABLES

As stated previously, we do not recognize a pressing need for exception variables in the programs we are

constructing. Implementing exception variables would have required that users include the exception address

as the �rst �eld of each exception data structure. For example, instead of:

raise( &x, &y, &ei, sizeof(ei) );
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a user could be required to place the exception address in the exception instance, as in:

struct ei

0

f

exceptionvalue v; =* �rst �eld is the address of the exception *=

... =* ei �elds *=

g;

...

ei

0

.v = &y; =* assign exception address for use in raise *=

raise( &x, &ei

0

, sizeof(ei

0

) ); =* exception argument y is removed *=

However, we did not see any reason to further burden the user with low-level details to supply a facility that

currently has no obvious use.

PREDEFINED EXCEPTIONS

The �System provides a number of prede�ned exceptions; they are derived from one another as shown by

the hierarchy in Figure 3. These exceptions are available globally and users can extend the hierarchy with

their own exceptions by deriving them from the appropriate prede�ned exception.

Data Items Associated with Prede�ned Exceptions

The exceptions uActiveTasksEx, uEmitEx, and uCreateProcessorEx are raised with the address of the �System

cluster on which the operation is being executed (see Reference [1] for an explanation of a cluster). All other

�Kernel exceptions are raised with no associated data item.

All prede�ned I/O exceptions, i.e. uIOEx and those below it, are raised using the address of the �le in

which the exception occurred, except for uCreateSockEx, uNoBufsEx, and the exceptions under uOpenEx.

These are raised using NULL, except for uNoBufsEx which is raised using NULL from uSocket, and using the

address of the socket from uAccept and uGetsockname. This allows a handler to catch exceptions speci�c to

a particular �le, when a �le exists.

PREDEFINED EXCEPTION TYPES

All �System prede�ned exception types follow the conventions stated earlier; that is, using the exception

name and su�x Msg for the exception instance type, and including the parent's type, if any, as the �rst �eld.

�System Exception Type

The exception instance for the uSystemEx exception is as follows:

typedef char *uSystemExMsg;

which is a pointer to a character string that is a brief summary of why the exception was raised. This string

can be printed by any exception handler.

�System Kernel Exception Types

Some examples of the exception types for the �System kernel exceptions are as follows:

typedef uSystemExMsg uKernelExMsg, uActiveTasksExMsg, uCreationExMsg;

typedef struct f

uCreationExMsg base;

uCluster cluster; =* cluster task is to be created on *=

long space; =* stack size for task *=

void *begin; =* address of routine to be emitted *=

long arglen; =* size in bytes of arguments to task *=

g uEmitExMsg;
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uAny Global exception

uSystemEx Errors in the uSystem

uKernelEx Errors in the uKernel

uDataCommEx Errors in communication

uDataCopyEx Errors in data copying

uSendMsgTooLongEx Sender's msg too long for receive area

uReplyAreaTooShortEx Sender's reply area too short for reply msg

uForwardMsgTooLongEx Forwarder's msg too long for receive area

uAbsorbAreaTooShortEx Absorber's reply area too short for die msg

uSuspendMsgTooLongEx Suspender's msg too long for resumed reply area

uResumeMsgTooLongEx Resumer's msg too long for resumed reply area

uBadCoroutineEx Resuming non-cocalled coroutine

uSynchFailEx Synchronization failure

uNotReplyBlockedEx Replying to task not reply blocked

uInvalidForwardEx Cannot forward, not reply blocked or already forwarded

uCreationEx Error when creating some uKernel entity

uCreateClusterEx No memory or processor creation failure

uEmitEx No memory to create task

uCocallEx No memory to create coroutine

uCreateProcessorEx No memory, bad arguments, or UNIX process failure

uActiveTasksEx Active tasks when destroying cluster

uOutOfMemoryEx Out of memory

uNoExtendEx Cannot extend existing block

uIOEx I/O system exceptions

uEofEx I/O system end-of-�le (uStream and uFile)

uIOErrorEx Error exceptions for uFile and uStream

uSocketErrorEx Error exceptions for socket operations

uCreateSockEx Socket creation error

uNotSockEx uFile must be a socket, but is not

uNoBufsEx No bu�er space in kernel

uBadSockAddressEx Bad address for socket

uConnFailedEx Socket connection failed due to bad address

uFileStreamEx Error exceptions for uFiles and uStreams

uOpenEx Error exceptions for the open operation

uOpenIOFailedEx A UNIX I/O operation failed

uOpenNoSpaceEx No Space on the disk

uBadPathEx Bad path

uNoPermsEx No permissions for operation

uNoFilesEx No more �le descriptors

uBadParmEx Bad parameter

uReadWriteEx Error exceptions for read/write operations

uIOFailedEx A UNIX I/O operation failed

uNoSpaceEx No Space on the disk

uBadFileEx Bad �le descriptor

Figure 3: �System Prede�ned Exception Hierarchy
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Figure 4 is a contrived example that attempts to create a �System task with a speci�c stack size. If there

is insu�cient memory to create the task, the exception uEmitEx is raised. After catching the uEmitEx

exception, the handler uses the information passed in the exception instance to determine what to do and

possibly retry the operation. The extra exception leave and uExcept statement are necessary because that is

the only possible way to exit the loop from the handler in the loop body, i.e. break cannot be used.

uException leave = U EXCEPTION( &uAny );

uEmitExMsg *msgp;

uExcept f

for ( ;; ) f

uExcept f

tid = uEmit( ..., stack size, ... );

uRaise( NULL, &leave, NULL, 0 ); =* terminate loop *=

g uHandlers f

uWhen( NULL, &uEmitEx, &msgp ) f

if ( msgp�>space > ... ) f

=* free storage or reduce emit stack size *=

g else f

uRaise( NULL, &leave, NULL, 0 ); =* terminate loop *=

g

g

g uEndExcept;

g

g uHandlers f

uWhen( NULL, &leave, NULL );

g

Figure 4: Repeated Attempts to Create a Task

I/O Exception Types

Some examples of the exception types for the I/O exceptions are as follows:

typedef struct f

uSystemExMsg base;

int errno; =* UNIX errno *=

g uIOErrorExMsg, uSocketErrorExMsg, uFileStreamExMsg;

typedef struct f

uFileStreamExMsg base;

char *path; =* path of �le to be opened *=

char *perms; =* permissions for opening of formatted �le (uStream) *=

int ags; =* access type for opening of unformatted �le (uFile) *=

int mode; =* protection mode for unformatted �le only (uFile) *=

g uNoPermsExMsg;

For example, after catching a uNoPermsEx exception, the following code examines one of the �elds in the

exception instance and possibly prints an error message before continuing execution.
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uNoPermsExMsg *msgp;

uExcept f

f = uFopen( ... ); =* uSystem cover routine for fopen *=

g uHandlers f

uWhen( NULL, &uNoPermsEx, &msgp ) f =* open failed because of bad permissions *=

if ( msgp�>perms == ... ) f

uFprintf( uStderr, "%s, errno:%d\n", msgp�>base.msg, msgp�>base.errno );

uFprintf( uStderr, "...", msgp�>path, msgp�>perms, msgp�>ags, msgp�>mode );

g

f = uFopen( "/dev/null", ... ); =* corrective action *=

g

g uEndExcept;

INTERVENTION DEFINITION

As with exceptions, C's limitations preclude direct implementation of our intervention model. As a result,

an intervention de�nition must be composed of two parts, the intervention name and the type of a routine

pointer that can be pushed on the intervention's stack. As well, the intervention handlers must be separate

routines instead of part of an intervention statement because there is no nesting of routine de�nitions in C;

therefore, it is di�cult to have code fragments, i.e. handlers, in a control structure that are subsequently

called. Further, bound interventions must be dealt with in the same way as for exceptions, that is, made into

free interventions. Finally, to achieve static type checking when calling an intervention and when installing

an intervention routine, the name of the intervention must be used; therefore, pointers to interventions

cannot be used in either context.

Synchronous Intervention

A synchronous intervention is one that is invoked only from within a task. It is declared using the macro

uIntervention, which speci�es the intervention name and the type of a routine pointer that can be pushed on

the intervention's logical stack, as in:

uIntervention( intervention-name, pointer-to-routine-type ); =* declare an intervention *=

Because of C declaration syntax and the implementation, the pointer-to-routine-type must be a typedef

name. For example,

typedef int (*fredType)( int, oat );

uIntervention( fred, fredType );

declares an intervention fred which can have pointers to routines of type fredType associated with it.

An intervention declaration instantiates a data item, so to use an intervention from another compilation

unit requires an extern declaration as with normal external data items in C. A special macro is required for

an extern intervention declaration (unlike a uException, which uses the normal C syntax), as in:

uInterExtern( intervention-name, pointer-to-routine-type ); =* external intervention declaration *=

One of the compilation units in a program must make the actual intervention declaration.

Asynchronous Intervention

An asynchronous intervention is one that is activated from another task. It is declared using the macro

uAsyncIntervention, which speci�es only the intervention name, as in:

uAsyncIntervention( intervention-name ); =* declare an asynchronous intervention *=

uAsyncInterExtern( intervention-name ); =* external intervention asynchronous declaration *=
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The type of a routine pointer that can be pushed on an asynchronous intervention's logical stack is assumed

to be:

void (*)( void * message, int message-length );

Therefore, an asynchronous intervention routine is restricted to passing a message of size message-length. It

was not possible to use the argument-parameter mechanism between tasks due to implementation di�culties.

However, it is possible to pass multiple values in a message so it is functionally equivalent to argument-

parameter passing without the static type-checking.

CALLING AN INTERVENTION

Synchronous Intervention

A synchronous intervention is called as follows:

uInterCall( intervention-name )( arguments to intervention routine );

For example:

int f( ... ) f

...

if ( ... ) i = uInterCall( fred )( 3, 4.5 ); =* static type checking *=

...

g

calls the intervention routine at the top of fred's intervention stack with arguments 3, 4.5.

Asynchronous Intervention

An asynchronous intervention is activated as follows:

uAsyncInterCall( task-id, intervention-name, message-ptr, message-length );

For example:

int f( ... ) f

...

if ( ... ) uAsyncInterCall( t, mary, msgptr, msglnth );

...

g

calls the intervention routine at the top of mary's intervention stack in task t with message msgptr, which

has size msglnth. Control continues immediately after the message has been delivered to the speci�ed task.

Enabling and Disabling Asynchronous Calls

For a particular task, an asynchronous intervention is disabled until an intervention routine is established

for it. Intervention activations remain pending until a routine is established. Once an intervention routine

is established, any pending activations or new activations to that intervention are delivered as quickly as

possible.

Explicit global disabling and enabling of all asynchronous interventions is provided for critical regions by

routines uAsyncInterEnable and uAsyncInterDisable. In general, asynchronous interventions should be disabled

for the shortest possible time interval or tasks will not deal with them quickly.
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HANDLING AN INTERVENTION

An intervention handler is established using the macros uInter and uEndInter in the following manner:

uInter( intervention-name, routine-pointer ) f =* push new routine on intervention stack *=

=* block in which intervention may be called *=

g uEndInter; =* pop routine from the top of the intervention stack *=

For example:

int fredCorrection( int x, oat y ) f ... g

uInter( fred, fredCorrection ) f

f( ... ); =* possible call to fredCorrection if there is an abnormal event in f *=

g uEndInter;

establishes routine fredCorrection at the top of the intervention stack for intervention fred. If a synchronous

intervention call is made to fred within f, routine fredCorrection is invoked. Asynchronous interventions are

established in the same way, only the routines that can be stacked for asynchronous interventions must have

the prede�ned type for message passing.

ADVANTAGES OF ASYNCHRONOUS INTERVENTION

To show how asynchronous interventions can be used to advantage, a parallel database search was con-

structed using three di�erent approaches: no abnormal termination, abnormal termination using polling,

and abnormal termination using asynchronous interventions. By comparing the results of the �rst search

with the last two, it is possible to see the performance bene�t of abnormal termination. By comparing the

coding styles of the last two, it is possible to see the bene�ts of asynchronous interventions.

The parallel search was structured to simulate searching a partitioned text-database for a particular key,

for example, to �nd all documents/papers with a particular keyword. Each document is partitioned across

multiple disk-drives so that it can be searched in parallel. The search-controller task selects each document,

and for each, starts N searcher tasks, where N is the number of partitions. If any one of the N search tasks

�nds the keyword, it reports to the search-controller, which includes that document in the list containing

the keyword. Once one of the N searcher tasks reports success, the remaining searchers can be stopped.

A new search cannot begin until all searchers complete their current search. The search-controller keeps a

pool of searcher-tasks available, eliminating the cost of creating the searcher-tasks for the next search. To

simplify the experiment, the search-controller searches one document with 100 di�erent keys that all exist

in the document, instead of searching 100 di�erent documents. The document is approximately 1.4M and

is partitioned into 1 to 8 equal pieces. We had only 4 disk drives on which to partition the document, so

access contention begins to reduce the parallelism for more than 4 partitions.

Using synchronous communication methods to solve this problem requires polling using messages or task

killing, which is an asynchronous operation; however, killing tasks precludes both programmatic shutdown

of the search-tasks and reusing them for subsequent searches. Therefore, asynchronous communications

methods are important.

The details of the three di�erent kinds of searches are:

� In the no-abnormal-termination search, each searcher-task completes searching its partition regardless

of the results of the other searcher-tasks.

� In the abnormal-termination search using polling, a global ag is used to indicate the status of the

search. If a searcher-task �nds the key, it sets the ag. A searcher-task can check the ag at any time

to determine if it should abort its search. To get a searcher-task to stop as quickly as possible after

the ag is set, the ag is checked on every iteration through the search loop.

� In the abnormal-termination search using asynchronous intervention, the controller-task performs an

asynchronous intervention activation to each of the searcher tasks after a searcher-task reports success.
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Figure 5: Partitioned-Database Search Results

The intervention routine raises an exception in the searcher-task so that polling is unnecessary. The

searcher-task installs an asynchronous intervention routine for the duration of the search, which raises

the abnormal termination exception, and the search code is also inside an exception block.

The abnormal-termination search routines are given in Appendix B.

Interpreting the Results

Figure 5 shows the results of the elapsed times for the three di�erent partitioned-database searches. The

searches are equal for one searcher-task because they all stop searching at the same point. In all other cases,

the execution time deceases as parallelism is introduced until 5 partitions when bus/controller/disk contention

begins to slow the search. When there is parallelism, the no-abnormal-termination search takes about twice as

long as the abnormal-termination searches because of the unnecessary searching. The abnormal-termination

searches take the same time.

The di�erence in coding styles between the two abnormal-termination searches is fairly obvious. Using

global references is, in general, an undesirable programming technique and polling requires inserting checks

at appropriate places to detect the event, which complicates coding and maintenance of the program. A

programmer has to place the check(s) so that it is performed often enough but not too often. Finally, using

global references is not extensible to a distributed environment without distributed shared-memory, whereas

an asynchronous intervention activation may be.

IMPLEMENTATION ISSUES

Interventions and exceptions are related and a�ect one another. Both create logical stacks of handlers or

routines that are added to and removed from as uExcept or uInter blocks are entered and exited. These

blocks can be exited in the normal manner or because an exception is raised during the execution of the

block. Regardless of how the blocks are exited, the appropriate stack item must be removed at each level

during the search for a handler or intervention routine.

In the �System, exception handlers and intervention routines are associated with the current coroutine

or task in which they are installed. Exceptions and synchronous interventions are raised or called within

a coroutine or task, and the appropriate exception handler or intervention routine is invoked, according
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to the handlers and routines installed. Asynchronous interventions are activated from another task, but

the intervention routine activated is the one associated with the called task or the coroutine it is currently

executing. Therefore each task and each coroutine has an additional data structure associated with it. This

data structure is a list of installed exception handlers and interventions, called the EI list. Both exception

handler and intervention nodes appear on the same EI list to make it possible to remove the correct nodes

when abnormal ow control (an exception) takes place. Exception handler nodes contain the information

necessary to restore context when an exception is raised and some additional housekeeping information used

when reraising an exception. The current context could be saved using the UNIX library routines setjmp and

longjmp; however, since the �System already supplies optimized machine speci�c context switching code for

coroutine and task switching, this was used instead. Intervention nodes contain the information necessary

to map an intervention name to the routine to be invoked.

The EI list is searched when an exception is raised or a intervention call made. The fact that there is

only one list containing both kinds of nodes means that the cost of a search depends not only on the number

of nodes but also the kinds of nodes, as exception nodes take longer to terminate. In general, we do not

consider this cost to be signi�cant because exceptions and interventions will be raised rarely, as they indicate

an abnormal event, and the number of nodes on the EI list will be small.

The common EI list also makes it possible to clean up allocated data for asynchronous interventions.

For the target task of an asynchronous intervention activation, a data structure is allocated containing the

message for the intervention and the name of the intervention. This data structure is atomically added

to a linked list on the target task descriptor, called the AI list. When the �System determines that it

is appropriate to call the intervention routine in the target task, it atomically removes the data structure

for the intervention from the AI list, pushes it onto the top of the EI list, and then locates and calls the

appropriate intervention routine. If an exception is raised during execution of the asynchronous intervention

routine, the search for a handler will encounter the AI item on the EI list. This means that control will not

return from the intervention routine. At this point, all data associated with the AI item are freed. Note

that this cleanup only occurs if the search for a handler encounters the AI item. If an exception handler is

found before the search reaches the AI item, it means that control will return from the intervention routine

back to the point of interruption, unless another exception is raised. Finally, when a task terminates, any

pending intervention calls on the AI list are simply freed.

PERFORMANCE

To give a general idea as to the performance of the Sequent Symmetry, on which the following timings were

performed, the following benchmarks are given: a procedure call with no parameters and returning no result

takes 3 microseconds, a setjmp followed by a call to a routine that performs a longjmp takes 17 microseconds,

a signal (SIGUSR1) with a null handler body takes 434 microseconds.

Exceptions

Due to the lack of compiler support, we could not implement techniques that have little or no execution

overhead for executing a uExcept statement [30, p. 455]. This only becomes important for low-level routines

which are invoked often and must guarantee execution of termination code if a lower-level exception is

raised. For example, I/O routines must ensure clean up code is executed if they are terminated because of

a lower-level exception, particularly an exception raised in an asynchronous intervention routine.

The cost of raising a synchronous exception is not �xed and depends on the length of the linear search to

locate the handler. There is a �xed cost to start the search, a cost for searching the EI list, a cost for each

nested uExcept block (i.e. a longjmp equivalent) on the EI list to get to the exception handlers, a cost for

each uWhen during the handler search, and a cost to make the exception instance available for the exception

hander if one is selected. Table 3 shows the time to execute a uExcept statement with an empty exception

body and to raise an exception where the search traverses 3 exception blocks and each block has 3 handlers;

the handler that is found is the third handler in the third exception block and no data is passed from raiser

to handler.
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Synchronous Interventions

The cost of raising a synchronous interventions is not �xed and depends on the length of the linear search to

locate the intervention routine. The variable cost is the search through the EI list to locate the appropriate

intervention and a �xed cost for the intervention routine call. Table 3 shows the time to execute a uInter

statement with an empty body and to call an intervention where the search traverses 3 intervention blocks

and calls the intervention routine associated with the third intervention block; no data is passed from caller

to handler and no value is returned.

Asynchronous Interventions

The cost of raising an asynchronous intervention is not �xed and depends on the state of the task that

is to be interrupted. Unfortunately, there is a particular scenario in which the intervention will never be

delivered. The cost of asynchronous intervention is divided between the activator and the target task. The

activator allocates storage for the message as it must be copied, waits until it can safely attach the message

to the other task, and links the message to the task; the activator then continues execution. The target task

only receives the intervention when it next stacks an intervention routine, enables interventions, or is made

active; if a task does none of these actions, it will never receive the activation (this requires that time-slicing

be turned o� for a computationally bound task). Fortunately, this situation is rare. Once the decision is

made to perform the intervention, the cost is the same as for a synchronous intervention call. After the call,

there is the cost of unlinking the message and deleting it. Table 3 shows the time to activate an intervention

routine in another task where the search traverses 3 intervention blocks and calls the intervention routine

associated with the third intervention block; no data is passed from activator to handler and no value is

returned.

uExcept uRaise uInter uInterCall uAsyncInterCall

computer/CPU installation 3 levels, 3 handlers installation 3 levels 3 levels

Sequent Symmetry S27

Intel 386, 16Mhz 17 �secs 203 �secs 15 �secs 19 �secs 170 �secs

Table 3: Executions Timings

CONCLUSIONS

We believe that the exception and intervention models and the selected design requirements provide an

excellent set of tools for handling abnormal events in a program. The basic design could be incorporated

into any block structured programming language and all constructs proposed can be statically type checked.

The di�erentiation between exceptions and interventions clari�es two quite di�erent mechanisms for han-

dling abnormal events. Each provides a facility that cannot be mimicked by the other or using existing

programming language facilities without violating abstraction or losing execution performance. The novel

ideas introduced by this work are bound exceptions and combining the general notion of interventions with

asynchronous usage.

While we are far from happy with the syntax and lack of programming language support for the C

implementation, we are pleased with the functionality that has been provided. When used with a small

set of conventions, it is possible to write C programs that have largely all the functionality described in

the model and design requirements. Incorporating exceptions into the �System and all �System I/O cover

routines was a signi�cant amount of work, in particular, organizing the hierarchical relationships among the

exceptions and the exception data passed from exception to handler. The bene�ts accrued were a substantial

improvement in the readability, reliability and maintainability of programs because it is no longer possible

to ignore return codes that indicate abnormal events nor is a program cluttered with numerous checks of

return codes.
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APPENDIX A Merge Files Example Using Exceptions

#include <uSystem.h>

=*

* Merge 2 �les into a third �le (assuming a high�key merge is not possible).

* End of �le is detected using exceptions.

*=

void uMain( int argc, char *argv[] ) f

uStream in1, in2, out;

int ch;

uOpenExMsg *msg;

uEofExMsg *eof;

int len;

char line1[256] = "", line2[256] = "";

switch ( argc ) f

case 3:

case 4:

uExcept f

in1 = uFopen( argv[1], "r" ); =* open input �le *=

in2 = uFopen( argv[2], "r" ); =* open input �le *=

g uHandlers f

uWhen( NULL, &uOpenEx, &msg ) f

uAbort( "%sInput open error for file '%s'.\n", msg�>base.msg, msg�>path );

g =* uWhen *=

g uEndExcept;

if ( argc == 3 ) f =* default output �le *=

out = uStdout;

g else f

uExcept f

out = uFopen( argv[3], "w" ); =* open output �le *=

g uHandlers f

uWhen( NULL, &uOpenEx, &msg ) f

uAbort( "%sOutput open error for file '%s'.\n", msg�>base.msg, msg�>path );

g =* uWhen *=

g uEndExcept;

g =* if *=

break;

case 1:

case 2:

default:

uAbort( "Usage: %s infile1 infile2 [outfile]\n", argv[0] );

g =* switch *=

uExcept f =* merge input �les *=

uFgets( line1, sizeof(line1), in1 ); =* try to get a line from each �le *=

uFgets( line2, sizeof(line2), in2 );

for ( ;; ) f =* output the smaller and attempt to replace it. *=

if ( strcmp( line1, line2 ) < 0 ) f

uFprintf( out, "%s", line1 );

uFgets( line1, sizeof(line1), in1 );

g else f

uFprintf( out, "%s", line2 );

uFgets( line2, sizeof(line2), in2 );

31



g =* if *=

g =* for *=

g uHandlers f

uWhen ( in1, &uEofEx, &eof ) f =* dump out the other non�empty �le *=

uExcept f

for ( ;; ) f

uFprintf( out, "%s", line2 );

uFgets( line2, sizeof(line2), in2 );

g =* for *=

g uHandlers f

uWhen ( in2, &uEofEx, &eof );

g uEndExcept;

g =* uWhen *=

uWhen ( in2, &uEofEx, &eof ) f

uExcept f

for ( ;; ) f

uFprintf( out, "%s", line1 );

uFgets( line1, sizeof(line1), in1 );

g =* for *=

g uHandlers f

uWhen ( in1, &uEofEx, &eof );

g uEndExcept;

g =* uWhen *=

g uEndExcept;

uFclose( in1 ); uFclose( in2 ); =* close input �les *=

uFclose( out ); =* close output �le *=

g =* uMain *=

APPENDIX B Parallel Searches Using Abnormal Termination

B.1 Abnormal Termination Using Polling

int stop; =* global ag for polling for termination *=

#de�ne Bu�erSize ( 8 * 1024 )

void Searcher( uFile search�le, uTask controller ) f =* search a �le for a key *=

uEofExMsg *eof;

char *key;

char text[Bu�erSize];

volatile int nbytes, locn;

int found;

for ( ;; ) f =* lookup each key *=

uReply( uReceive( &key, sizeof(key) ), NULL, 0 ); =* get key from controller *=

if ( key == NULL ) break;

uExcept f

for ( ;; ) f

nbytes = uRead( search�le, text, sizeof(text) ); =* read 8K block of text *=

locn = bmhsearch( text, nbytes, key, strlen( key ) ); =* fast search of key in text *=

if ( locn <= nbytes ) f =* key found ? *=

found = 1;

stop = 1;

break;

g; =* exit *=

if ( stop ) f =* someone else found key ? *=

found = 0;
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break;

g; =* exit *=

g =* for *=

g uHandlers f

uWhen( search�le, &uEofEx, &eof ) f =* end of �le while reading text �le *=

found = 0;

g =* uWhen *=

g uEndExcept;

uSend( controller, NULL, 0, &found, sizeof(found) ); =* send controller the result of the search *=

g =* for *=

g =* Searcher *=

B.2 Abnormal Termination Using Asynchronous Interventions

uAsyncIntervention( SearchInterrupt );

uException SearchStopped = U EXCEPTION( &uAny );

void DummyInter( void *msg, int msglen ) f =* invoked if asynchronous intervention is *=

g =* DummyInter *= =* delivered after the search is complete *=

void TerminateSearch( void *msg, int msglen ) f =* invoked if asynchronous intervention is *=

uRaise( NULL, &SearchStopped, NULL, 0 ); =* delivered during the search *=

g =* TerminateSearch *=

#de�ne Bu�erSize ( 8 * 1024 )

void Searcher( uFile search�le, uTask controller ) f =* search a �le for a key *=

uEofExMsg *eof;

char *key;

char text[Bu�erSize];

volatile int nbytes, locn;

int found;

uInter( SearchInterrupt, DummyInter ) f

for ( ;; ) f =* lookup each key *=

uExcept f

uReply( uReceive( &key, sizeof(key) ), NULL, 0 ); =* get key from controller *=

if ( key == NULL ) break;

uExcept f

uInter( SearchInterrupt, TerminateSearch ) f

for ( ;; ) f

nbytes = uRead( search�le, text, sizeof(text) ); =* read 8K block of text *=

locn = bmhsearch( text, nbytes, key, strlen( key ) ); =* fast search of key in text *=

if ( locn <= nbytes ) f =* key found *=

found = 1;

break;

g; =* exit *=

g =* for *=

g uEndInter;

g uHandlers f

uWhen( search�le, &uEofEx, &eof ) f =* end of �le while reading text �le *=

found = 0;

g =* uWhen *=

g uEndExcept;

g uHandlers f

uWhen( NULL, &SearchStopped, NULL ) f =* someone else found key *=

found = 0;

g =* uWhen *=
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g uEndExcept;

uSend( controller, NULL, 0, &found, sizeof(found) ); =* send controller the result of the search *=

g =* for *=

g uEndInter;

g =* Searcher *=
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